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ME-221
PROBLEM SET 2

Problem 1

Obtain mathematical models of the spring-mass systems shown in Figure 1 and derive the
equivalent spring constant for parallel and serial arrangements. The input to the systems is
the force F , the displacement x is measured from the equilibrium position, and the spring
coefficients are given by k, k1, and k2.
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Figure 1: Spring-mass systems

Problem 2

Derive the equations of motion for the lever system shown in Figure 2. The input to the
systems is the vertical force F , and the displacement x is measured from the equilibrium
position A. The spring and viscous friction coefficients are given by k and f , respectively.
Comment on the assumptions you have made to simplify the model.
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Figure 2: Lever arm connected to a spring mechanism

Problem 3

The system in Figure 3 represents an accelerometer capable of measuring the acceleration of
the object on which it is attached. y is the displacement of the object whose displacement
we want to measure. z is the displacement of the mass m with respect to the housing of the
accelerometer.

a) Derive a mathematical model of the mechanical system given in Figure 3. The input
to the system is the acceleration ÿ and the output is the displacement z of the mass m
with respect to the frame of the accelerometer. The spring and viscous friction coefficients
are given by k and f , respectively. Hint: Since Newton’s law of motion must be applied
with respect to absolute displacements, define x as the displacement of m relative to a fixed
landmark, as shown in Figure 3.

b) In which case is the acceleration ÿ proportional to displacement z?

EPF - Lausanne 2-4 Systèmes dynamiques
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❑ Exercice 3

x: déplacement absolu de la masse (repère fixe)

a) Equation dynamique

Loi de mouvement de Newton:

(1)

avec des conditions initiales appropriées, par exemple:

b) 2 cas spéciaux

L’équation (1) permet d’expliciter l’accélération :

(2)

• Si  est grand (par rapport à  et 1), alors 

• Si  est grand (par rapport à  et 1), alors 
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Figure 3: Spring-mass-damper system with accelerometer
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Problem 4

Obtain a mathematical model for the electrical circuit shown in Figure 4. The input to the
systems is the voltage u and the voltage y is measured as the output. The capacitance C is
given by C = α0 +α1y, where α1 and α2 are constant parameters. Hint: Choose the voltage
on the capacitor and the current passing through the inductor as the system states.
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Figure 4: RLC circuit

Problem 56.9. PROBLEMS VI-25

6.9 Problems

Section 6.1: The Euler-Lagrange equations

6.1. Moving plane **

A block of mass m is held motionless on a frictionless plane of mass M and angle of
inclination µ (see Fig. 6.8). The plane rests on a frictionless horizontal surface. The
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Figure 6.8block is released. What is the horizontal acceleration of the plane? (This problem
already showed up as Problem 3.8. If you haven’t already done so, try solving it using
F = ma. You will then have a greater appreciation for the Lagrangian method.)

6.2. Two falling sticks **

Two massless sticks of length 2r, each with a mass m fixed at its middle, are hinged
at an end. One stands on top of the other, as shown in Fig. 6.9. The bottom end
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Figure 6.9

of the lower stick is hinged at the ground. They are held such that the lower stick
is vertical, and the upper one is tilted at a small angle ≤ with respect to the vertical.
They are then released. At this instant, what are the angular accelerations of the two
sticks? Work in the approximation where ≤ is very small.

6.3. Pendulum with an oscillating support **

A pendulum consists of a mass m and a massless stick of length `. The pendulum
support oscillates horizontally with a position given by x(t) = A cos(!t); see Fig. 6.10.
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Figure 6.10

What is the general solution for the angle of the pendulum as a function of time?

6.4. Two masses, one swinging ***

Two equal masses m, connected by a massless string, hang over two pulleys (of negli-
gible size), as shown in Fig. 6.11. The left one moves in a vertical line, but the right

m

r

m

θ

Figure 6.11

one is free to swing back and forth in the plane of the masses and pulleys. Find the
equations of motion for r and µ, as shown.

Assume that the left mass starts at rest, and the right mass undergoes small oscillations
with angular amplitude ≤ (with ≤ ø 1). What is the initial average acceleration
(averaged over a few periods) of the left mass? In which direction does it move?

6.5. Inverted pendulum ****

A pendulum consists of a mass m at the end of a massless stick of length `. The other
end of the stick is made to oscillate vertically with a position given by y(t) = A cos(!t),
where A ø `. See Fig. 6.12). It turns out that if ! is large enough, and if the pendulum
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Figure 6.12

is initially nearly upside-down, then surprisingly it will not fall over as time goes by.
Instead, it will (sort of) oscillate back and forth around the vertical position. If you
want to do the experiment yourself, see the 28th demonstration of the entertaining
collection in (Ehrlich, 1994).

Find the equation of motion for the angle of the pendulum (measured relative to its
upside-down position). Explain why the pendulum doesn’t fall over, and find the
frequency of the back and forth motion.

Section 6.2: The principle of stationary action

6.6. Minimum or saddle **

(a) In eq. (6.26), let t1 = 0 and t2 = T , for convenience. And let ª(t) be an easy-to-
deal-with “triangular” function, of the form

ª(t) =

Ω
≤t/T, 0 ∑ t ∑ T/2,
≤(1 ° t/T ), T/2 ∑ t ∑ T.

(6.93)

Figure 5: Moving plane

A block of mass m is held motionless on the friction-
less inclined plane of a wedge of mass M and angle
of inclination θ as shown in Figure 5. The wedge
rests on a frictionless horizontal surface. The block is
released. What is the horizontal acceleration of the
wedge (which is expected to be in the direction of the
arrow)? Hint: If you are missing an equation to solve
your system, try to come up with one which forces
the block to stay in contact with the wedge.
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